OPTION A : Mathématiques

Exercice nº 1:

On considère la suite (U_n) définie par $U_n = \frac{4n-2}{n+2}$

- 1) Donner, par calcul, les valeurs approchées au centième de U_0 à U_{10} et U_{100} .
- 2) Montrer que pour tout $n \in \mathbb{N}$, on a -1 $\leq U_n \leq$ 4. On dit (remplir les blancs) que la suite

(*U_n*) est _____ par (-1) et _____ par (4).

- 3) Étudier le sens de variation de (U_n) .
- 4) Démontrer que, pour n suffisamment grand, on a $U_n > 3,999$. Que peut-on penser de

 $\lim_{+\infty} (U_n) ?$

Exercice nº 2

On considère la fonction f définie sur]-1; $+\infty$ [par :

$$f(x) = ax + b + 3\ln(x+1)$$

où a et b désignent deux réels que l'on déterminera dans la question 1). On appelle C_f sa courbe représentative.

 C_f vérifie les conditions suivantes : elle passe par le point A(0;7) où elle admet une tangente horizontale et est monotone de part et d'autre de cet extremum.

- 1) Déterminer a et b.
- 2) En utilisant les données de l'énoncé, que peut-on dire du sens de variation de f ? (sans étudier le signe de la dérivée).
- 3) On suppose désormais que la fonction f est définie sur]-1 ; + ∞ [par :

 $f(x) = -3x + 7 + 3\ln(x+1)$

- a) Calculer la limité de f en -1. Interpréter graphiquement le résultat.
- b) En admettant que $\lim_{x \to +\infty} \frac{\ln(x+1)}{x} = 0$, calculer $\lim_{x \to +\infty} f(x)$.
- 4) Calculer f'(x) et étudier les variations de f. Dresser le tableau de variation.