OPTION A: Mathématiques

Remarque préliminaire:

- Sauf précision contraire figurant dans un énoncé, lorsque des calculs sont demandés, les résultats seront donnés sous forme décimale au centième près.
- Chaque réponse doit être précédée du numéro de la question à laquelle elle se rapporte, sur la copie et les intercalaires destinés à cet effet. <u>Aucune réponse ne doit être inscrite sur le sujet.</u>

Exercice 1

On considère la fonction f définie pour tout x > 3 par $f(x) = \ln (2x-6)$ et on appelle C_f la courbe représentative de f dans un repère orthonormal $(0; \vec{i}; \vec{j})$

Partie I

- 1) Déterminer les limites de f (x) lorsque $x \rightarrow 3$ et $x \rightarrow +\infty$. Que peut-on en déduire pour la courbe C_f ?
- 2) Étudier le sens de variation de f et dresser le tableau de variation.
- 3) La courbe C_f coupe l'axe des abscisses au point A. Quelles sont les coordonnées de A?
- 4) Déterminer une équation de la droite (T) tangente en A à la courbe C_I

Partie II

On considère la droite (D) d'équation y=x. Par symétrie axiale d'axe D, la courbe C_f se transforme en une courbe C_g représentative d'une fonction g définie dans R. On admet que pour tout réel x, la fonction g (x) peut s'écrire sous la forme g(x)= a + b e^x où a et b sont deux réels. La courbe C_g passe par le point A' image de A par la symétrie axiale d'axe D. De plus, la courbe admet au point A' une tangente (T') qui est l'image de (T) par la symétrie d'axe (D).

- 1) Calculer, en justifiant, les valeurs de a et b.
- 2) Calculer l'ordonnée exacte du point E appartenant à C_g et ayant pour abscisse 3. En déduire les coordonnées du point E' image de E par rapport à D.
- 3) Déterminer la valeur de $\int_{0}^{3} (3 + \frac{1}{2}e^{x}) dx$

- 4) En déduire l'aire A, exprimée en unités d'aire, du domaine défini par la courbe C_g , l'axe des ordonnées et la droite parallèle à l'axe des abscisses passant par E.
- 5) Expliquer comment on peut en déduire, sans calcul, la valeur exacte de $\int_{\frac{7}{2}}^{3+\frac{1}{2}e^{x}} f(x)dx$

Exercice 2

Soient a et b, deux suites réelles définies sur N par $a_0=4$ et $b_0=2$ et pour tout entier naturel n par :

$$a_{n+1} = \frac{1}{4} (3a_n + b_n)$$

 $b_{n+1} = \frac{1}{4} (a_n + 3b_n)$

 Δ étant un axe rapporté au repère (O;i), pour tout entier naturel on désigne par A_n et B_n les points de Δ d'abscisses a_n et b_n

- 1) Placer A_0 , B_0 , A_1 , B_1 , A_2 et B_2 sur Δ .
- 2) Soit U_n la suite réelle définie sur N par $U_n = a_n + b_n$
 - a) Démontrer que la suite Un est constante.
- b) En déduire que pour tout entier naturel n, les segments $[A_nB_n]$ ont le même milieu I dont on déterminera l'abscisse.
- 3) On considère la suite réelle V_n définie sur N par $V_n = b_n a_n$.
- a) Montrer que V_n est une suite géométrique. Déterminer sa limite si elle existe,
- b) Que peut-on dire de la distance A_nB_n lorsque $n \to +\infty$?
- 4) Exprimer a_n et b_n en fonction de n pour tout n appartenant à N
- 5) Démontrer que an et bn sont convergentes et ont la même limite.

Exercice 3

Dans l'espace rapporté à un repère orthonormal (O; \vec{i} ; \vec{j} ; \vec{k}), on considère le plan (P) d'équation 2x+y-z+7=0 et les points A (4;1;-2), B(-3,1,2) et C(-1;3;1).

- 1) Montrer que le point B appartient au plan (P) et déterminer un système d'équations paramétriques de la droite (BC).
- 2) Déterminer une équation cartésienne du plan (Q) passant par A et orthogonal à (BC).
- 3) Déterminer un système d'équations paramétriques de la droite (Δ) passant par A et orthogonale à (P).
- 4) Soient R le projeté orthogonal de A sur (P) et S le projeté orthogonal de A sur (BC), déterminer les coordonnées de R et S.

Exercice 4

Une urne contient 3 boules bleues et n boules blanches (n étant un entier naturel non nul), indiscernables au toucher et ayant chacune la même probabilité d'être tirée.

Partie I

On tire successivement 3 boules avec remise et on désigne par X la variable aléatoire égale au nombre de boules bleues tirées.

- 1) Donner la loi de probabilité de X.
- 2) Calculer E(X) et déterminer n pour que l'espérance mathématique soit égale à 1,5.

Partie II

Pour la suite de l'exercice on considère que n=2. On effectue un tirage successif et sans remise des 5 boules de l'urne. On désigne par Z la variable aléatoire égale au rang de la première boule bleue tirée.

- 1) Déterminer la loi de probabilité de Z.
- 2) Calculer l'espérance mathématique et la variance de Z.